LENS
This module uses LENS to predict data samples with the help of a large language model.
Lens Predict
This module automatically derives a task description, examples and label scheme from the available information about the input, depending on whether the data is loaded from a database or file. Each sample of the input is processed using this information.
Options
ip
(str
) :127.0.0.1
, The ip address to reach Nova Assistantport
(str
) :1337
, The port Nova Assistant is listening onprovider
(str
) :ollama_chat
, The model providermodel
(str
) :llama2
, The llm model to uselanguage
(str
) :en
,``de``, The language in which the instructions are writtenturn_based_analysis
(bool
) :False
, If set to false the main transcript will be processed segment by segment. If set to true the main transcript and the context transcript will be aggregated into speaking turn pairs. This can be useful to analyze interactions in a dialogue.
IO
Explanation of inputs and outputs as specified in the trainer file:
Input
transcript
(FreeAnnotation
): The input text to analyzetranscript_context
(FreeAnnotation
): A second transcript to provide context information for the main transcript. Only used when “turn_based_analysis” is set to true.
Output
The output of the model are three continuous annotations:
sentiment
(DiscreteAnnotation
): The prediction with respect to the description, examples, classes and naming_scheme
Lens Free Prompt
This module iterates samplewise over the input and uses the system prompt and the user prompt to process it.
Options
ip
(str
) :127.0.0.1
, The ip address to reach Nova Assistantport
(str
) :1337
, The port Nova Assistant is listening onprovider
(str
) :ollama_chat
, The model providermodel
(str
) :llama2
, The llm model to useprompt
(str
) : ``, The prompt to pass to the llmgroup_turns
(bool
) :False
, If set to false the main transcript will be processed segment by segment. If set to true the main transcript and the context transcript will be aggregated into speaking turn pairs. This can be useful to analyze interactions in a dialogue.
IO
Explanation of inputs and outputs as specified in the trainer file:
Input
transcript
(FreeAnnotation
): The input text to analyzetranscript_context
(FreeAnnotation
): A second transcript to provide context information for the main transcript. Only used when “turn_based_analysis” is set to true.
Output
The output of the model are three continuous annotations:
sentiment
(FreeAnnotation
): The prediction with respect to the system prompt and user prompt.
Examples
Request
{‘system_prompt’: ‘’, ‘provider’: ‘ollama’, ‘model’: ‘mistral-nemo’, ‘message’: ‘translate the provided text to english. Respond in JSON. Only use one key called “label”.. n “””therapeut: Okay, ja Frau Hilmann, das ist unsere erste Sitzung seit den Feiertagen. Die Feiertage sind etwas ganz Besonderes und passiert meistens relativ viel. Für manche ist es auch gar nicht so einfach, die Feiertage zu überschleben. Wie war es denn so bei Ihnen? n patient: Also eigentlich habe ich mich ziemlich auf Weihnachten gefreut, weil Weihnachten… …viele schöne Sachen und ja, ich freue mich meine Familie zu sehen, die… …weil sie so weit weg wohnt, sehen wir uns ja auch nicht so häufig.”””. Value:n’, ‘temperature’: 0, ‘resp_format’: ‘json’, ‘max_new_tokens’: 128, ‘enforce_determinism’: True, ‘stream’: True}